The Puller-Follower Control of Compliant and Noncompliant Antagonistic Tendon Drives in Robotic Systems

نویسندگان

  • Veljko Potkonjak
  • Bratislav Svetozarevic
  • Kosta Jovanovic
  • Owen Holland
چکیده

This paper proposes a new control strategy for noncompliant and compliant antagonistic tendon drives. It is applied to a succession of increasingly complex single‐joint systems, starting with a linear and noncompliant system and ending with a revolute, nonlinearly tendon coupled and compliant system. The last configuration mimics the typical human joint structure, used as a model for certain joints of the anthropomimetic robot ECCEROBOT. The control strategy is based on a biologically inspired puller‐ follower concept, which distinguishes the roles of the agonist and antagonist motors. One actuator, the puller, is considered as being primarily responsible for the motion, while the follower prevents its tendon from becoming slack by maintaining its tendon force at some non‐zero level. Certain movements require switching actuator roles; adaptive co‐contraction is used to prevent tendons slackening, while maintaining energetic efficiency. The single‐joint control strategy is then evaluated in a multi‐ joint system. Dealing with the gravitational and dynamic effects arising from the coupling in a multi‐joint system, a robust control design has to be applied with on‐line gravity compensation. Finally, an experiment corresponding to object grasping is presented to show the controller’s robustness to external disturbances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Puller-follower Control Concept in the Multi-jointed Robot Body with Antagonistically Coupled Compliant Drives

Copying human physiology leads us to the first truly anthropomimetic robot ECCEROBOT, driven by the antagonistically coupled compliant drives. Control design of such a mechanism appears as a really demanding and challenging mission. Puller-follower concept, developed for the robotic joint with antagonistically coupled drives, is expanded to the multi-joint control level. Problems in control of ...

متن کامل

Modeling and Control of a Compliantly Engineered Anthropomimetic Robot in Contact Tasks

This paper attempts to develop a dynamic model and design a controller for a fully anthropomorphic, compliantly driven robot. To imitate muscles, the robot’s joints are actuated by DC motors antagonistically coupled through tendons. To ensure safe interaction with humans in a human-centered environment, the robot exploits passive mechanical compliance, in the form of elastic springs in the tend...

متن کامل

Modeling and Control of Adjustable Articulated Parallel Compliant Actuation Arrangements in Articulated Robots

Considerable advances in robotic actuation technology have been made in recent years. Particularly the use of compliance has increased, both as series elastic elements as well as in parallel to the main actuation drives. This work focuses on the model formulation and control of compliant actuation structures includingmultiple branches andmultiarticulation, and significantly contributes by propo...

متن کامل

A Compliant Biomimetic Artificial Finger for Anthropomorphic Robotic Hands via 3D Rapid Prototyping

This paper presents an anthropomorphic robotic finger that is composed of three biomimetic joints whose biomechanics and dynamic properties are close to their human counterparts. By using five pneumatic cylinders, the robotic finger is actuated through a series of simplified antagonistic tendons whose insertion points and moment arms at each joint are inherited from the anatomy of the human fin...

متن کامل

Designing a Robust Control Scheme for Robotic Systems with an Adaptive Observer

This paper introduces a robust task-space control scheme for a robotic system with an adaptive observer. The proposed approach does not require the availability of the system states and an adaptive observer is developed to estimate the state variables. These estimated states are then used in the control scheme. First, the dynamic model of a robot is derived. Next, an observer-based robust contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012